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Abstract—In this paper, a reference line guided Pareto local
search (RLG-PLS) is proposed for combinatorial bi-objective op-
timization problems (CBOPs). RLG-PLS uses a set of predefined
reference lines to guide the search direction and maintain the
diversity of the population. Two populations are evolving in
RLG-PLS, i.e., 1) the external population (EP) maintains the
nondominated solutions that are closest to the reference lines;
and 2) a starting population (SP) stores all the starting solutions
for Pareto local search. At each generation, Pareto local search
is applied to search the neighborhood of each solution in SP and
these neighborhood solutions are also used to update EP and then,
SP is updated with the newly added solutions from EP. When
no nondominated solutions can be found (i.e., SP is empty), new
reference lines are inserted to guide the Pareto local search for
more new nondominated solutions. In the experimental studies,
RLG-PLS is compared with MOEA/D-LS (WS, TCH, PBI),
NSGA-II-LS and MOMAD on bi-objective travelling salesman
problem (BOTSP). The experimental results show that RLG-PLS
outperforms all the compared algorithms.

Index Terms—Combinatorial bi-objective optimization, Pareto
local search, travelling salesman problem;

I. INTRODUCTION

A multiobjective optimization problem (MOP) can be stated

as follows:

maximize F (x) = (f1(x), . . . , fm(x)) (1)

subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m
real-valued objective functions. The attainable objective set is

{F (x)|x ∈ Ω}. In the case when Ω is a finite set, (1) is called

a combinatorial MOP (CMOP). A CMOP with two objectives

is usually called CBOP.

Let u, v ∈ Rm, u is said to dominate v, denoted by u ≺ v,

if and only if ui ≤ vi for every i ∈ {1, . . . ,m} and uj < vj
for at least one index j ∈ {1, . . . ,m}1. A solution x∗ ∈ Ω is

Pareto-optimal to (1) if there exists no solution x ∈ Ω such that

F (x) dominates F (x∗). F (x∗) is then called a Pareto-optimal
(objective) vector. In other words, any improvement in one

objective of a Pareto optimal solution is bound to deteriorate

1In the case of maximization, the inequality signs should be reversed.

at least another objective. The set of all the Pareto-optimal

solutions is called the Pareto set (PS) and the image of (PS)

on the objective vector space is called Pareto front (PF) [17].

As finding the exact PF of a real-world CMOP is usually

NP-hard [10] by nature, over the past decades, the multiobjec-

tive heuristics (e.g. Pareto local search [15], [18], multiobjec-

tive simulated annealing [21]), multiobjective meta-heursitics

(e.g., multiobjective evolutionary algorithms (MOEAs) [1]–

[3], [5], [9], [22] have been widely used for approximating the

PF. Among them, Pareto local search (PLS), as an extension

of single objective local search [14], [15], [18], has attracted

a great amount of attention. PLS explores the neighbourhood

of a set of nondominated solutions for approximating PF [7].

However, PLS and its variants may suffer from long con-

vergence time for high-quality approximation of PF [7], as

it preserves all the found nondominated solutions, leading to

unbearable computational cost. To address the above issue,

several variants of PLS (e.g., [7], [8]), as well as its hybrid

algorithms (e.g., [13], [15]) have also been proposed. For

example, in [8], a dynamic discretization of the objective

space is adopted to help PLS converge faster. One of the

most successful PLS hybrid is the two-phase Pareto local

search (2PPLS) [15]. In 2PPLS, the high-quality nondominat-

ed solutions is generated by solving a number of aggregated

subproblems in the first phase and PLS is then adopted for

obtaining better PF approximation in the second phase. 2PPLS

generally works well, however, the direct adoption of PLS

in the second phase may still face the high computational

overhead.

Decomposition methods have been widely used for aiding

the optimization process (e.g., [11], [12], [20], [23]). The

representatives of such algorithms are MOEA/D [23] and

NSGA-III [6], both of which uses predefined uniformly dis-

tributed reference lines (i.e., reference points, weight vectors

or direction vectors) for maintaining the diversity of the pop-

ulation. The selection operation in NSGA-III can be viewed

as a two-phase procedure as follows. All the nondominated

solutions are selected in the first phase while the nondominated

solutions closest to every reference lines are further selected
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Fig. 1: An illustration of reference line guided PLS. Non-

dominated solution A is associated with i-th reference line

and C is associated with the (i+ 1)-th reference line. A new

nondominated solution B can be preserved by inserting a new

reference line λ∗ between λi and λi+1.

in the second phase for maintaining the diversity and reduce

the computational overhead. In other words, the diversity is

implicitly achieved by the wide spread of the reference lines

and the computational complexity is also controlled by the

number of reference lines.

Without knowing the shape of PF a-priori, the reference

lines are usually predefined by uniformly sampling in an unit

simplex [4]. The local search along a fixed set of reference

line may 1) get stuck in the local optima, due to the limited

neighborhood size in the local search and 2) lead to very

limited number of approximated solutions, as it is very likely

that multiple reference lines may lead the search to the same

Pareto optimal solution.

In this paper, reference-line-guided Pareto local search

(RLG-PLS) is proposed to address the above issues. The new

reference lines are added to guide the Pareto local search for

more nondominated solutions as well as avoiding it to be stuck

in the local optima. A example of maximization problem is

given in Fig. 1, where a nondominated solution B cannot be

obtained due to its long distance to nondominated solution A

and B, which are close to i-th and (i+ 1)-th reference lines,

respectively. After a new reference line λ∗ is inserted right

between λi and λi+1, B can be preserved. Moreover, when

the search along reference lines λi and λi+1 is trapped in

local optima, solution B is very likely to help them get out

of local optima by searching new neighboring regions around

solution B.

The rest of this paper is organized as follows. Section II

describes the details of RLG-PLS. The experimental setups are

given in section III. The experimental results and discussions

are presented in section IV. Section V concludes this paper.

II. ALGORITHM

A. Main Framework

At each generation, RLG-PLS maintains two populations:

1) External population EP stores the solutions maintained

by a set of reference lines W (|W | = N ). It is worth

noting that |EP | ≤ N as multiple reference lines may

associate with the same solution.

2) Starting population SP stores the starting solutions for

PLS.

To effectively insert new reference lines for guiding the

local search, a flag vector flag ∈ {0, 1}N is adopted to mark

the effectiveness of each reference vector, where flagi = 1
represents the direction along the i-th reference line once

generated effective solution(s) for updating EP in the previous

generations and flagi = 0 represents not.

The main framework of RLG-PLS is given by Algorithm
1, which contains the initialization, Pareto local search and the

insertion of new reference lines. Each component is explained

as follows.

Algorithm 1: Main Framework

Input :
• A stopping criterion;

• N : the number of reference lines;

• A set of reference lines W ;

• N < max num: the upper limit of the number of

reference lines.

Output: the solution set EP .

/* Initialize all the parameters */
1 Initialization(EP �, SP �,W �)
/* Pareto Local search on SP */

2 ParetoLocalSearch(SP �, EP �,W ↓)
3 If SP == ∅ and N < max num, then

InsertLines(SP �, EP �,W �)
4 If stopping criteria is satisfied, stop and output the EP .

Otherwise go to Step2.

B. Initialization

In the initialization process (Algorithm 2), N reference lines

are uniformly generated [4]. N solutions {x1, . . . , xN} are

generated randomly or by some heuristics to initialize both

EP and SP . Each reference line is associated with a solution

that is closest to it. The “closeness” in this paper is defined

by the acute angle between a reference line λj and a solution

x, base on (2):

angle(x, λj) = arccos

(
(F (x)− z∗)Tλj

||F (x)− z∗||||λj ||
)

(2)

where F (x) = (f1(x), f2(x), ..., fm(x))T is the objective

vector of x, and z∗ is the ideal objective vector.
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Algorithm 2: Initialization

Input : EP ,SP ,W .

Output: EP ,SP ,W .

1 For each k = 1, . . . , N , solution xk is generated

randomly or by a heuristic. xk is associated with a

reference line based on (2) .

2 Initialize EP = {x1, . . . , xN}, SP = EP .

3 Each reference line λk is set as

λk =

(
k − 1

N − 1
,
N − k

N − 1

)
(3)

W = {λ1, . . . , λN}.
4 Set flagi = 0, for each i = 1, . . . , N .

C. Pareto Local Search

In Algorithm 3, Pareto local search is conducted on each

solution x of SP by searching its neighborhood N(x), then

N(x) is used to update EP (Algorithm 4 explained in the next

section). All the new nondominated solutions that successfully

update EP also store in SP as the starting solutions for the

next iteration of the local search. A flag variable udpate is

used to mark if the current solution can update EP by its

generated neighborhood.

Algorithm 3: Pareto Local Search (ParetoLocalSearch)

Input : SP ,EP ,W .

Output: SP ,EP .

1 TP = EP .

2 for each x ∈ SP do
3 update = false;

/* N(x) is neighborhood of x
generated by local search */

4 for each x′ ∈ N(x) do
5 UpdateEP (x′ ↓, EP �,W ↓, update �)
6 end
7 if update == true then

/* find the index of x in EP */
8 i = find(EP == x);
9 set flagi = 1;

10 end
11 end
/* SP is reinitilized by the newly

added solutions of EP */
12 SP = EP\TP .

D. Updating EP

In Algorithm 4, each solution y generated in the local

search is used to update EP as follows. Firstly y is compared

with all the other solutions in EP . y will not be stored into

EP if it is dominated by any a solution in EP . Otherwise, it

replaces the solution xj associated with the reference line λj

if it is closer to reference line λj(line 10-16) based on (2).

Algorithm 4: Updating EP (UpdateEP )

Input : y,EP ,W ,update.

Output: EP ,update.

1 for each x ∈ EP do
2 if x ≺ y then
3 return;

4 end
5 if y ≺ x then
6 set x = y;

7 update = true;

8 end
9 end
/* If y is not dominated by any

solution in EP */
10 for each xj ∈ EP do
11 θ1 = angle(y, λj);
12 θ2 = angle(xj , λj);
13 if θ1 < θ2 then
14 set xj = y;

15 update = true;

16 end
17 end

Algorithm 5: Inserting Reference Lines (InsertLines)

Input : SP ,EP ,W .

Output: SP ,EP ,W .

1 for each i = 1, . . . , N do
/* xi is associated with λi

*/
2 EP = EP ∪ {xi}, W = W ∪ {λi};
3 if flagi == 1 and i < N then
4 x∗ = xi, λ∗ = λi/||λi||+ λi+1/||λi+1||;

EP = EP ∪ {x∗}, W = W ∪ {λ∗};
5 end
6 end
7 SP = EP , N = |W |.
8 for each i = 1, . . . , N do
9 set flagi = 0;

10 end

E. Inserting New Reference Lines

When there is no starting solution for local search (i.e,

SP == ∅) and the number of reference lines does not exceed

the maximum value max num (line 3 of Algorithm 1), new

reference lines are inserted to guide the local search as follows.

If any of the neighboring solution N(x) that a reference line

associates with are able to enter the external population EP ,

this reference line is called efficient (marked by flag). For an

efficient reference line λi, a new reference line λ∗ is inserted

between i-th and (i + 1)-th reference lines in the following

way:

λ∗ =
λi

||λi|| +
λi+1

||λi+1|| (4)
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III. EXPERIMENTAL SETUPS

A. Test Problems

The Traveling Salesman Problem (TSP) can be modeled as a

graph G(V,E), where V ={1, ..., n} is the set of vertices (cities)

and E={ei,j}n×n is the set of edges (connections between

cities). The task is to find a Hamiltonian cycle of minimal

length, which visits each vertex exactly once. In the case of

the multiobjective TSP (MOTSP), each edge ei,j is associated

with multiple values such as cost, length, traveling time, etc.

Each of them corresponds to one criterion. Mathematically,

the MOTSP can be formulated as:

minimize fi(π) =

n−1∑
j=1

c
(i)
π(j),π(j+1) + c

(i)
π(1),π(n)

i = 1, ...,m.

(5)

where π = (π(1), ..., π(n)) is a permutation of cities; c
(i)
s,t is

the cost of the edge between city s and city t regarding criterion

i; and m is the number of objectives to be optimized. This

paper also mainly focus on bi-objective Traveling Salesman

Problem (BOTSP, m = 2).

In this paper, the instances of BOTSPs are used. BOTSP

instances with 100 cities, published in [15], [16], [19] are

adopted and named as kroAB100, euclid100, mixedAB100

and ClusterAB100.

B. Parameters Settings

Two classical and one state-of-art algorithms are adopted

for comparisons as follows.

• MOEA/D-LS: MOEA/D [23] based on three decompo-

sition methods, weighted sum (WS), Tchebycheff (TCH)

and penalty boundary intersection (PBI) is adopted. For a

fair comparison, MOEA/D (WS, TCH, PBI) is combined

with local search heuristic (MOEA/D-LS). The number of

weight vectors (reference lines) is set to (100+400)/2 =
250 for all instances and the neighborhood size is set to

30. For PBI, the penalty parameter θ is set to 5.

• NSGA-II-PLS: NSGA-II [6] is a classical Pareto-

dominance based algorithm, which is also combined with

local search heuristic for a fair comparison.

• MOMAD: Hybridization of decomposition and local

search for multiobjective optimization (MOMAD) [13]

is the state-of-the-art algorithm combining ideas from

2PPLS and MOEA/D.

1) The neighborhood N(x) of a solution x is generated as

follows. For BOTSP, a list of candidate edges (all edges

of the solutions in the current EP ) is maintained. More

details can be referred in [13]. For a feasible solution x,

two nonadjacent edges are removed and two new edges

from the list are added for generating a new neighbor.

2) The number of reference lines N is initialized to 100 and

its maximum allowed value max num is set to 400 for

all test instances in RLG-PLS.

3) All the compared algorithms are run independently for

20 times on each test instance.

All the compared algorithms use the same method to

initialize populations. The stop criterion for all the algorithms

is set as follows. An algorithm is terminated when there is no

newly added solutions for local search or the number of calling

N(x) is up to 30000 for BOTSP instances. All algorithms are

coded in C++ and the experiments are conducted on a PC

equipped with Intel 2.6 GHz CPU and 8G RAM.

C. Performance Metrics

In this paper, Hypervolume indicator(IH ) [24] and Set

coverage (C−metric) [24] are used to evaluate all algorithms.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the following experiments are conducted to

test the performance of RLG-PLS.

• Comparisons with MOEA/D-LS (WS, TCH, PBI),

NSGA-II-PLS and MOMAD to test the performance of

RLG-PLS.

• Verify the effects of inserting reference lines on the

performance of RLG-PLS.

A. The comparisons of RLG-PLS with other algorithms

The final performance of all the compared algorithms, in

terms of mean C-metric, on different BOTSP instances are

presented in Table I. It can be observed very clearly that RLG-

PLS outperforms all the compared algorithms on all instances.

These results show that RLG-PLS has better performance on

convergence.

In addition, the boxplots on the performance of all the

compared algorithms in terms of hypervolume are shown in

Fig. 2. RLG-PLS has the best performance on all the BOTSP

instances. MOMAD also has very good performance on these

instances. All the results show that RLG-PLS has better overall

performance on both convergence and diversity.

The evolution of all the compared algorithms in terms of

average hypervolume with the numbers of calling N(x) on

two BOTSP instances are plotted in Fig. 3. It can be observed

that RLG-PLS converges much faster than the other compared

algorithms. This can be explained as follows. In RLG-PLS,

the number of reference lines (N ) starts with a small number

thus less solutions are used as the starting solutions for PLS

and computation overhead can be reduced. Along with the

increase of reference lines by inserting new reference lines,

more and more nondominated solutions can be obtained. On

the contrary, MOEA/D-LS (WS, TCH, PBI) maintains a fixed

number of reference lines while PLS and its variants, such as

MOMAD, may suffer from long convergence time for high-

quality approximation of PF, as explained in Section I.

B. The Effectiveness of Inserting Reference Lines

To further verify the effectiveness of inserting reference line

on the performance of RLG-PLS, three different versions of

RLG-PLS are compared with each other. The first one is the

original RLG-PLS, in which the number of reference lines N
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RLG−PLS WS TCH PBI NSGAII MOMAD

1.35

1.36

1.37

1.38

1.39

1.4

x 1011

hy
pe

rv
ol

um
e

(a) kroAB100

RLG−PLS WS TCH PBI NSGAII MOMAD
1.34

1.35

1.36

1.37

1.38

1.39

1.4

1.41

x 1011

hy
pe

rv
ol

um
e

(b) ClusterAB100

RLG−PLS WS TCH PBI NSGAII MOMAD
1.31

1.32

1.33

1.34

1.35

1.36

1.37

x 1011

hy
pe

rv
ol

um
e

(c) euclidAB100

RLG−PLS WS TCH PBI NSGAII MOMAD

1.34

1.36

1.38

1.4

1.42
x 1011

hy
pe

rv
ol

um
e

(d) mixedAB100

Fig. 2: Boxplots on the performance of RLG-PLS and MOEA/D-LS (WS, TCH, PBI), NSGA-II-PLS and MOMAD in terms

of hypervolume on BOTSP instances.

TABLE I: The values of c-metric (%) between RLG-PLS and MOEA/D-LS (WS), MOEA/D-LS (TCH), MOEA/D-LS (PBI),

NSGA-II-PLS and MOMAD on BOTSP instances

instance
MOEA/D-LS (WS) MOEA/D-LS (TCH) MOEA/D-LS (PBI) NSGA-II-PLS MOMAD

C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A)

kroAB100 92.85 48.24 76.67 75.26 86.97 47.46 100 0.00 99.96 38.89

ClusterAB100 79.68 72.82 73.20 52.92 84.93 27.80 100 0.00 99.86 24.35

euclidAB100 96.03 48.65 89.12 76.60 83.50 46.80 100 0.00 100 0.12

mixedAB100 99.76 34.80 100 14.76 100 14.65 100 12.84 75.55 45.89

A corresponds to RLG-PLS.
B corresponds to the compared algorithm.
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Fig. 3: Convergence graphs in terms of hypervolume (mean) obtained by MOMA/D (WS, TCH, PBI), MOMAD and RLG-PLS

on two BOTSP instances.
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is set to 100 and the number of maximum number of reference

lines max num is set to 400. In the second version of RLG-

PLS, called RLG-PLS1, the number of reference lines N is

fixed as 100. In the third version of RLG-PLS, the number of

reference lines N is fixed to 600, called RLG-PLS2.

Fig. 4a show that the convergence speed of original RLG-

PLS is faster than RLG-PLS1 and RLG-PLS2. And the final

obtained solution set of original RLG-PLS is also better

than the two others in terms of convergence and diversity

performances. Therefore, it can be concluded that reference

line guided technique is quite effective.

V. CONCLUSION

This paper proposed a reference line guided Pareto local

search (RLG-PLS) for solving bi-objective combinatorial opti-

mization problems. RLG-PLS is compared with MOEA/D-LS

(WS, TCH, PBI), NSGA-II-PLS and MOMAD on bi-objective

traveling salesman problems. The experimental results show

that RLG-PLS outperforms the compared algorithms in term

of hypervolume and set coverage metric.

Further work includes the investigations of applying RLG-

PLS for solving combinatorial optimization problems with

three or more objectives and more effective method of in-

serting reference lines.
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Fig. 4: Convergence graphs in terms of hypervolume value and final nondominated solutions found by RLG-PLS, RLG-PLS1

and RLG-PLS2 on BOTSP instance.
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